skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coleman, Daniel J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract People often modify the shoreline to mitigate erosion and protect property from storm impacts. The 2 main approaches to modification are gray infrastructure (e.g., bulkheads and seawalls) and natural or green infrastructure (NI) (e.g., living shorelines). Gray infrastructure is still more often used for coastal protection than NI, despite having more detrimental effects on ecosystem parameters, such as biodiversity. We assessed the impact of gray infrastructure on biodiversity and whether the adoption of NI can mitigate its loss. We examined the literature to quantify the relationship of gray infrastructure and NI to biodiversity and developed a model with temporal geospatial data on ecosystem distribution and shoreline modification to project future shoreline modification for our study location, coastal Georgia (United States). We applied the literature‐derived empirical relationships of infrastructure effects on biodiversity to the shoreline modification projections to predict change in biodiversity under different NI versus gray infrastructure scenarios. For our study area, which is dominated by marshes and use of gray infrastructure, when just under half of all new coastal infrastructure was to be NI, previous losses of biodiversity from gray infrastructure could be mitigated by 2100 (net change of biodiversity of +0.14%, 95% confidence interval −0.10% to +0.39%). As biodiversity continues to decline from human impacts, it is increasingly imperative to minimize negative impacts when possible. We therefore suggest policy and the permitting process be changed to promote the adoption of NI. 
    more » « less
  2. We introduce hybrid integrated telecom single-photon sources on a commercial foundry multilayer silicon photonic chip. We show above-band and resonant waveguide-coupled single-photon emission tunable via the DC Stark shift. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Sediment supply is a primary factor in determining marsh response to sea level rise and is typically approximated through high‐resolution measurements of suspended sediment concentrations (SSCs) from adjacent tidal channels. However, understanding sediment transport across the marsh itself remains limited by discontinuous measurements of SSC over individual tidal cycles. Here, we use an array of optical turbidity sensors to build a long‐term, continuous record of SSC across a marsh platform and adjacent tidal channel. We find that channel and marsh concentrations are correlated (i.e., coupled) within tidal cycles but are largely decoupled over longer time scales. We also find that net sediment fluxes decline to near zero within 10 m of the marsh edge. Together, these results suggest that large sections of the marsh platform receive minimal sediment independent of flooding frequency or channel sediment supply. Marsh‐centric, as opposed to channel‐centric, measures of sediment supply may better characterize marsh platform vulnerability. 
    more » « less
  7. Abstract Vegetation is a critical component of the ecogeomorphic feedbacks that allow a salt marsh to build soil and accrete vertically. Vegetation dieback can therefore have detrimental effects on marsh stability, especially under conditions of rising sea levels. Here, we report a variety of sediment transport measurements associated with an unexpected, natural dieback in a rapidly prograding marsh in the Altamaha River Estuary, Georgia. We find that vegetation mortality led to a significant loss in elevation at the dieback site as evidenced by measurements of vertical accretion, erosion, and surface topography compared to vegetated reference areas. Below‐ground vegetation mortality led to reduced soil shear strength. The dieback site displayed an erosional, concave‐up topographic profile, in contrast to the reference sites. At the location directly impacted by the dieback, there was a reduction in flood dominance of suspended sediment concentration. Our work illustrates how a vegetation disturbance can at least temporarily reverse the local trajectory of a prograding marsh and produce complex patterns of sediment transport. © 2018 John Wiley & Sons, Ltd. 
    more » « less